
Performance of Service-Discovery
Architectures in Response to Node Failures

C. Dabrowski, K. Mills, and A. Rukhin
U.S. National Institute of Standards and Technology

Gaithersburg, MD 20899

cdabrowksi@nist.gov

ABSTRACT
Designs for distributed systems must consider the possibility that failures will arise, and must adopt specific failure detection
and recovery strategies. Many distributed-object systems employ simple techniques to detect and report failures, requiring
applications to decide upon appropriate recovery strategies. In this paper, we investigate the ability of selected designs for
service-discovery protocols to detect and recover from failure of remote services when used to support real-time distributed
control applications. We model two architectures (two-party and three-party) underlying most commercial service-discovery
systems. We use simulation to quantify functional effectiveness and efficiency achieved by the two architectures as the rate
of failure increases for remote services. We further decompose non-functional periods into failure-detection latency and
restoration latency. Our quantitative measurements suggest that a two-party architecture yields better robustness than a three-
party architecture. We discuss the underlying causes for this outcome.

1. INTRODUCTION
Designs for distributed systems must consider the
possibility that failures will arise, and must adopt specific
failure detection and recovery strategies [1]. Much existing
research surrounding failures in distributed systems focuses
on providing fault-tolerant invocation of remote methods,
either through parallel execution of replicated components
or through automated checkpoint and restart procedures [2-
4]. Fault-tolerant remote-method invocation typically relies
upon a layer of mechanisms to detect and recover from
failures without requiring application-specific awareness or
action. While such application-transparent fault-tolerance
appears appealing, many current distributed object systems,
even large systems, employ simpler techniques that detect
and report failures, requiring applications to decide upon
appropriate recovery strategies [5-7]. In this paper, we
investigate one such set of simpler techniques requiring
application awareness and cooperation. These techniques
encompass the fundamental failure detection and recovery
strategies available in service-discovery systems [8-13].
In previous work, we investigated change propagation in
various service-discovery systems under communication
failure [14] and message loss [15]. Our investigations
yielded quantitative measures for the effectiveness,
responsiveness, and efficiency of alternate system designs.
In this paper, we investigate the effectiveness, efficiency
and latency of service-discovery systems in detecting
component failure and locating replacements. We model
specific discovery strategies and failure-recovery
techniques in combination with two major architectural
variants found in service-discovery systems: two-party,
where clients and services rendezvous directly, and three-
party, where clients and services rendezvous through a
directory. For the three-party architecture, we consider
topologies that include directory replicas. Our models,
which adapt discovery and recovery strategies from the
Jini™ Networking Technology [10] and Universal Plug-
and-Play [9] specifications, layer a real-time distributed
control application above each of the discovery systems.
We model application-level strategies that focus our
experiments on the fundamental properties of service-
discovery protocols; thus, we exclude a number of possible
application choices, such as service caching. We measure
functional effectiveness, defined as the proportion of time
that a distributed application meets its requirements, or
more precisely, as the proportion of time that a client
component possesses an operational set of remote services
needed to accomplish its task. To provide a clear picture of
failure response, we also measure both failure-detection
latency (time required to recognize that a remote service
used by the client has failed) and failure-recovery latency
(time required for the client to replace a failed service). We
also measure overhead as the number of messages sent.
Our models are written using Rapide [16], which records

complete event traces that permit detailed analysis of
system behavior, helping us to determine causes underlying
quantitative performance.

2. DISCOVERY AND RECOVERY
Service-discovery protocols enable networked components
to rendezvous and to combine with discovered components
into distributed applications meeting specific requirements.
Discovery protocols include failure-detection and recovery
techniques that enable components within distributed
applications to detect and react to failures by restoring
communications with remote components or by locating
alternate components. A number of different designs have
been proposed for service-discovery systems. For example,
a team at Sun Microsystems designed Jini Networking
Technology, a general service-discovery system atop
JavaTM. As another example, a group from Microsoft and
Intel conceived Universal Plug-and-Play (UPnP) to provide
plug-and-play components for distributed systems.

2.1 Service Discovery
Our analysis of six discovery systems [8-13] revealed that
most designs use one of two underlying architectures: two-
party or three-party. A two-party architecture consists of
two component types: service manager (SM) and service
user (SU). The three-party architecture adds a third
component type, service cache manager (SCM). Multiple
SCMs can be used to mitigate the effect of SCM failure. In
both architectures, service discovery occurs passively, via
multicast announcements, and actively, via multicast
queries. Each SM maintains a database of service
descriptions (SDs), where each SD encodes the essential
characteristics of a particular service provider (SP)
managed by the SM. Each SU seeks SDs satisfying specific
requirements. Where employed, the SCM operates as an
intermediary, matching advertised SDs of SMs to SD
requirements provided by SUs.
In this study, each SM manages one SP from among three
service types: fast sensor, slow sensor, and actuator. Our
experiment consists of four instances of each service type,
whose roles are explained below. Figure 1 shows a two-
party architecture deployed in our experiment topology
with 12 SMs and one SU. To animate our two-party model,

Figure 1. Two-party service-discovery architecture
with one service user and 12 service managers

HTTP/TCP and HTTP/UDP

UPnP Multicast Group

Unicast Links

Fast
Sensor

SM

Fast
Sensor

SM

Slow
Sensor

SM

Slow
Sensor

SM

Actuator
SM

Actuator
SM

Service
User

we incorporated discovery behaviors from the UPnP
specification, as described elsewhere [14, 15]. Figure 2
shows the three-party architecture in our experimental
topology: with 12 SMs, one SU, and up to three SCMs. To
animate our three-party model, we chose discovery
behaviors from the Jini specification, as described
elsewhere [14, 15].

2.2 Failure-Detection Techniques
To detect failures, applications using discovery systems
rely on a combination of two techniques: monitoring
periodic transmissions and retrying ad hoc transmissions
(where exceeding a retry bound causes an exception).
Discovery protocols specify periodic transmission of key
messages. In addition, components employing remote
services may maintain regular contact to accomplish
application-specific tasks. Components can listen for these
recurring messages, much as a heartbeat can be monitored
to assess patient health. For example, both Jini and UPnP
periodically announce resource availability. Similarly, a
sensor service may periodically issue readings to its clients.
Failure to receive scheduled communications might
indicate that the remote service has failed, or that the
channel between client and service is blocked. In other
situations, software components send messages using
reliable communication protocols, which persistently
resend unacknowledged messages up to some bound,
issuing a remote exception (REX) if the bound is exceeded.
For example, a client may attempt to invoke a method
offered by a remote service that has failed. In the three-
party architecture, a SU might attempt to query for a SD
from a failed SCM, only to receive a REX. Failure
detection enables components to employ recovery
techniques.

2.3 Failure-Recovery Techniques
Discovery systems generally support two recovery
techniques: soft-state and application-level persistence.
Periodic announcements issued by a component convey
soft information about component state, which a receiver
can cache for a period of time, consistent with the expected

announcement rate. Each new announcement may convey
updated state information; thus, a receiver overwrites
previously cached state with state from newly arriving
announcements. When an announcement fails to arrive, a
receiver discards previously cached state, effectively
eliminating knowledge about existence of the announcing
component. When announcements resume, a receiver
rediscovers the remote component and recovers the latest
component state. Our application uses a modified form of
soft state, which allows discarded components to be either
rediscovered or replaced. For example, upon failure of
heartbeat messages sent by UPnP SMs to refresh cached
SDs, a SU discards knowledge of the SM and any
associated SDs. Similarly, a SU may discard knowledge of
a SM and SD for a remote sensor upon failure to receive
sensor updates. To effect recovery, UPnP SUs may
commence periodic multicast (Msearch) queries to search
for a new instance of a required service. Once the SU
regains a SD meeting requirements, the related queries
cease. In Jini, loss of contact with a service may cause the
SU to query a SCM for a replacement. In addition, service
unavailability may be indicated by failure of heartbeat
messages sent by Jini SMs to refresh SDs cached on SCMs,
causing the SCM to discard the SD and to notify SUs that
indicated interest in learning about service failures.
Periodic announcements ensure rediscovery of the SCM by
SMs within 120s after the SM recovers. The Jini SU can
then receive the corresponding SD through notification or
query. Of course, in Jini, SCMs could also fail. SCM
startup announcements ensure rediscovery of a restarted
SCM within 30s.
When failures lead to a REX, discovery systems generally
expect application software to initiate recovery, guided by
an application-level persistence policy, which might ignore
the REX, retry the operation for some period, or discard
knowledge of the remote component. Since our experiment
simulates a real-time control application, we chose not to
persist after a REX, but instead to discard knowledge of the
associated remote component, relying on periodic
announcements and soft state to recover. This policy is also
used in the three-party model when SCM failure is detected
through a REX in response to a query (SU) or registration
refresh (SU or SM). After discarding knowledge of a SM
(UPnP) or SCM (Jini), all operations involving the remote
component cease.

3. EXPERIMENT DESCRIPTION
We investigate how effectively the two alternate service-
discovery architectures, and associated failure detection
and recovery mechanisms, provide clients with required
services as nodes hosting the services fail and recover. We
model the two- and three-party architectures using the four
topologies shown in Figures 1 and 2. In all topologies, we
deploy a single SU and twelve SMs, where each SM
manages a specific type of SP: “fast” sensor, “slow”

Figure 2. Three-party service-discovery architecture
with one service user, 12 service managers, and up
to 3 service cache managers

Slow
Sensor

SM

Slow
Sensor

SM

Service
User

Service Cache
Manager

(SCM)

Aggressive Discovery Multicast Group

Lazy Discovery Multicast Group

Actuator
SM

Actuator
SM

Fast
Sensor

SM

Fast
Sensor

SM

Unicast Links

Remote Method
Invocation

Optional SCMs

sensor, or actuator. The twelve SMs include four of each
SP type. After discovery and activation by the SU, a “fast”
sensor transmits a reading every two seconds and a “slow”
sensor transmits a reading every 30 seconds. Once
discovered and activated by the SU, an actuator can be
invoked after the SU receives an appropriate combination
of readings from a “fast” and “slow” sensor. In our
experiment, we simulate actuation attempts using a uniform
distribution with a mean of 60s. When the SU holds one
SD for a SP of each type (“fast” sensor, “slow” sensor, and
actuator) and each of the SPs is operational, then the
application is considered functional. If the SU lacks SDs
for one or more SP type or if one or more of the SDs held
by the SU describes a SP that is not operational, then the
application is considered non-functional. The experiment
measures accumulated functional time in proportion to a
duration D during which SMs and SCMs periodically fail
and recover. To establish initial conditions, each topology
is exercised until discovery completes, and the application
becomes functional. To focus exclusively on failure
detection and recovery processes, we do not cache services;
the SU holds at most one SD for each SP type at any time.
In the three-party architecture, some additional decisions
are necessary. For each SD discovered and retained, the SU
registers with the SCM for notification about failures. The
SU refreshes notification registrations every 300s. Each
SM registers with each discovered SCM, and refreshes
every 60s (slow sensors/actuators) or 300s (fast sensors).

3.1 Failure Model
During D, each SM (and SCM in the three-party case) fails
randomly and independently, although at least one service
of each type always remains active so that the application
could become functional. We calculate a mean time to
failure, MTF, from a failure rate R, varied from 0.1 to 0.9
of D in 0.1 increments, where MTF = (1 – R) * D. We
choose node failure times from a “stepped” normal
distribution with three steps: a 0.15 probability that failure
occurs before (MTF - 0.2 * MTF), a 0.7 probability that
failure occurs between (MTF - 0.2 * MTF) and (MTF + 0.2
* MTF), and a 0.15 probability that failure occurs between
(MTF + 0.2 * MTF) and (2 * MTF). Failure time is
distributed uniformly within each step.
When a SM or SCM fails, affected services become
unavailable for a time. There are three failure classes, each
with a different probability, P, and duration. Short failures
occur with P = 0.1 for a fixed duration (135s); intermediate
failures occur with P = 0.7 for a duration selected
uniformly on the interval 180-300s, long failures occur
with P = 0.2 selected uniformly on the interval 480-600s.

3.2 Metrics
We define non-functional time, NF, as accumulated time
during which an application is in a non-functional state.
Assuming we can measure NF, over a given duration D,

then functional effectiveness, F, can be quantified as a
ratio: F = (D – NF)/D. We define consistency conditions to
measure NF, as explained below.
A client in a distributed application may become non-
functional due to failure of remote components but incur a
delay before detecting the failure. We call this delay
failure-detection latency. After detecting a non-functional
state, the application may incur some delay while restoring
required services. We call this delay failure-recovery
latency. During periods when a client incurs either failure-
detection or failure-recovery latency or both (the states can
overlap when a client requires more than one remote
service), the distributed application is non-functional. We
accumulate such non-functional periods to NF.
We define two consistency conditions such that violation
of one corresponds to failure-detection latency and
violation of the other corresponds to failure-recovery
latency. The following consistency condition requires each
SD held by a SU to match a SD managed by a SM. More
formally,

SM

SU

vicesmanagedSerSDSM
eseredServicdisSDSMSDSUSM

∈•∃→
∈∀ cov),(],,[

This condition (CC-1) is violated (and failure-detection
latency commences) when a SM fails but the SU holds a
SD provided by the SM. Once the SU discards the SD, or
the SM recovers, consistency is restored (and failure-
detection latency ends). A second consistency condition
requires that available SDs matching SU requirements
should be known to the SU. More formally,

SU

SU

SM

eseredServicdisSDSM
eededresourcesNSD

vicesmanagedSerSDSDSUSM

cov),(

],,[

∈→
∈

∧∈∀

This condition (CC-2) is violated (and failure-recovery
latency begins) after the SU purges a SD for a failed
service and commences search. Consistency returns (and
failure-recovery latency ends) when the SU finds a SD
matching its needs.

4. RESULTS AND DISCUSSION
For each of four topologies (two-party and three-party with
one, two, and three SCMs), we set D = 1800s and executed
multiple repetitions for each value of R using the failure
model described in 3.1. We conducted separate experiment
runs for cases where failed nodes (including SMs and
SCMs) are discarded and replaced by new nodes, and for
cases where failed nodes restart, maintaining persistent
information in the manner specified by the protocols. For
the replacement case, we ran a second variant of the
experiment where all SMs for a resource type may fail. We
recorded functional effectiveness, detection latency,
recovery latency, and the total number of messages
exchanged in each run.

4.1 Effectiveness and Efficiency
Figure 3 shows average functional effectiveness of the two-
party and three-party architectures for the replacement case
as R increases, and where one SM for each service type is
always available (implying that the system could be
functional for all of D). In examining Fig. 3, recall how
failure detection occurs. In the two-party model, the SU
may detect service unavailability by monitoring cyclical
sensor readings or by monitoring notification registration
refreshes. In the three-party model, the SCM notifies the
SU if the SM fails to refresh service registrations. In both
models, the SU may also detect unavailability when a REX
occurs in response to attempted actuations. To become
functional again, the SU must invoke appropriate recovery
mechanisms to regain SDs to replace unavailable services.
In the three-party architecture, at least one SCM must be
operational for recovery to succeed. During periods when
all SCMs fail, the SU is unable to recover needed services,
increasing non-functional time.

Overall, the two-party architecture proves more effective
above 60% failure rate, allowing the SU to remain
functional for as much as 80% of D even when the failure
rate reaches 80% (MTF = 360s). At rates below 60% the
effectiveness of two-party is comparable to three-party
with two and three SCMs. Fig. 3 also shows that
effectiveness improves for the three-party architecture as
the number of SCMs increase, though even with 3 SCMs,
performance does not equal that of the two-party
architecture. Adding SCMs improves effectiveness by
lowering the incidence of concurrent failure of all SCMs.
Message counts (Fig. 4) reveal the two-party architecture to
be significantly more efficient than the three-party
architecture. Note also that for the three-party architecture,
total message counts decrease as failure rate increases,
because SCMs remain down for longer periods; thus,
requiring fewer registration refresh and SCM heartbeat
messages. For the two-party model, message counts

increase slightly at high failure rates because the SU
invokes active recovery procedures after detecting failures.
Fundamentally, the three-party architecture relies on
redundancy of SCMs to improve functional effectiveness;
thus, exacting a high overhead at low failure rates, but
permitting overhead to diminish as failure rate increases.
The two-party architecture relies on active recovery
invoked by a SU; thus, at low failure rates overhead is
lower because recovery procedures are not invoked often,
but overhead increases with failure rate as recovery
procedures are invoked more often.

4.2 Underlying Causes
To better understand differences in effectiveness among the
alternate architectures, we decomposed non-functional time
to show the estimated proportion attributable to failure-
detection latency and to failure-recovery latency. Figure 5
shows that detection latency is the dominant (~80%)
component of non-functional time for the two-party model.
Analysis of execution traces using the Rapide toolset
showed most failures were detected through missed sensor
readings (2s for fast sensors and 30s for slow sensors) or
REXs received in response to failed actuations. We
suspected that in the two-party architecture detection
latency, and therefore non-functional time, could be
reduced by increasing registration-refresh frequency; thus,
decreasing the interval between heartbeats. Failed
notification refresh attempts by the SU would permit
detection of SM unavailability (and violation of CC-1)
before non-receipt of slow sensor readings or failed
actuation attempts. To test this theory, we lowered the
registration refresh frequency from 300s to 30s in the two-
party model, and reran the experiment The result was a
49% drop in detection latency leading to a 2.6% overall
improvement in functional effectiveness (an increase in the
mean effectiveness across all failure rates from 0.908 to
0.932). However, efficiency decreased 69%, with a rise in
message count from an average of 662 to 1116. Similarly

Figure 4. Average message counts for four topologies
under increasing R for the replacement case where at
least one SM of each type is operational (30 reps/point)

Figure 3. Functional effectiveness for four topologies
under increasing R for the replacement case where at
least one SM of each type is operational (60 reps/point)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Two Party
Three Party (1 SCM)
Three Party (2 SCMs)
Three Party (3 SCMs)

0

10
00

20
00

30
00

40
00

50
00

0 20 40 60 80

Failure Rate (%)

M
es

sa
ge

 C
ou

nt
s

Two Party
Three Party, 1 SCM
Three Party, 2 SCMs
Three Party, 3 SCMs

y = +2.16x

y = -1.70x

y = -6.97x

y = -10.55x

in the three-party architecture, we suspect increasing
refresh frequency for service registrations would lead to
earlier detection by the SCM of SM failure [see 17], and to
earlier notification for the SU. Of course, increasing the
heartbeat rate also would decrease efficiency.

Our data for the three-party architecture show that above
60% failure rate the incidence of concurrent failure of all
SCMs increases steadily. This precludes finding available
services meeting SU requirements; thus, leaving the system
in violation of CC-2. To restore consistency and achieve
operational functionality, a SCM must first recover, accept
registrations for the SU and available SMs, and then
propagate matching SDs to the SU. Lacking an ability to
directly discover SMs, the SU remains non-functional
while awaiting recovery of at least one SCM. These effects
are evident in Fig. 6, which shows the proportion of
recovery latency increasing for the three-party model (3
SCMs) as the failure rate rises. This trend is more marked
as the number of SCMs decreases (not shown here). We
speculate that functional effectiveness might improve for
the three-party model if SUs were permitted to discover
SMs directly when no SCMs are available. We plan
experiments along these lines using the Service Location

Protocol (SLP) [12], which enables switching between the
two- and three-party architecture as the situation warrants.

4.3 Results for Experiment Variants
To confirm our findings, we varied the experiment in two
respects. First, we changed node behavior to allow failed
nodes to restart rather than be replaced by new nodes. In
this case, three-party SCMs that recovered were allowed to
retain previous, unexpired service registrations and
notification registrations in accordance with the Jini
protocol, while two-party SMs were permitted to retain
notification registrations. The results showed no significant
differences in performance between the restart and
replacement cases, the graphs (not shown) were almost
identical. This occurs in the three-party case because most
of the persistent registrations expire by the time a failed
SCM restarts. In the two-party case, where only
notification registrations persist, the SU that registered the
notification is likely to have discarded knowledge of the
SM by the time it restarts. Since, in our experiment,
restarting nodes derive little value from persistent
information, functional effectiveness is mainly influenced
by soft-state mechanisms, as in the replacement case.
Second, we varied the experiment to permit all SMs to fail,
rather than to have at least one SM always available for
each service type. The graphs (not shown) illustrate
functional effectiveness for both the two- and three-party
models decreases substantially above R = 60%, as the
incidence of concurrent SM failures increases, resulting in
extended periods when no SMs were available for a service
type needed by the SU. Though the absolute functional
effectiveness declined, the ranking of the curves remained
the same as in the previous experiments, with the two-party
model proving most effective followed by the three-party
model with three-, two-, and one-SCM topologies,
respectively. Thus, in all of our experiment variants, the
two-party model achieved better functional effectiveness
than the three-party model.

5. CONCLUSIONS
This study provides an initial characterization of the
performance of service-discovery architectures in response
to node failures, which complements our previous studies
of response to communication failures and message loss.
The present study shows that in response to node failure,
two-party systems exhibit better functional effectiveness
and efficiency than three-party systems, with three-party
SCMs being a potential point of vulnerability. Possible
solutions to mitigate this vulnerability require further study.
Similarly, further research is needed to verify that
registration refresh rates or service caching could improve
functional effectiveness. Finally, we need to verify that our
conclusions hold in networks with large numbers of
services.

Figure 6. Detection and restoration latencies in three-
party service-discovery model with 3 SCMs as a
proportion of non-functional time (also shown) (60
reps/point)

Figure 5. Detection and restoration latencies in
two-party service-discovery model as a proportion
of non-functional time (also shown) (60 reps/point)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Pr
op

or
tio

n
of

 L
at

en
ci

es

Detection Latency
Restoration Latency
Non-Functional Time

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Pr
op

or
tio

n
of

 L
at

en
ci

es

Detection Latency
Restoration Latency
Non-Functional Time

6. ACKNOWLEDGMENTS
The work discussed in this paper was funded in part by
DARPA, under the auspices of the FTN and DASADA
programs.

7. REFERENCES
[1] G. Bieber and J. Carpenter, “Openwings A Service-

Oriented Component Architecture for Self-Forming,
Self-Healing, Network-Centric Systems,” on the
http://www.openwings.org web site.

[2] Fault Tolerant CORBA Specification, v1.0, ptc/00-04-
04, Object Management Group.

[3] C. Marchetti, A. Virgillito, and R. Baldoni, “Design of
an Interoperable FT-CORBA Compliant
Infrastructure,” Proceedings of the European Research
Seminar on Advances in Distributed Systems
(ERSADS), 2001.

[4] D. Liang et al., “A Fault-Tolerant Object Service on
CORBA,” The Journal of Systems and Software, vol.
48, 1996.

[5] Y.M. Wang, O.P. Damani, and W.J. Lee, “Reliability
and Availability Issues in Distributed Component
Object Model (DCOM),” Proceeding of the
International Workshop on Community Networking,
1997, pp. 59-63.

[6] Felber, P. et al. Failure Detectors as First Class
Objects, Proceedings of the International Symposium
on Distributed Objects and Applications (DOA’99),
IEEE Computer Society Press, September 5-7, 1999, p.
132.

[7] Carey, R.W. et al. “LARGE-SCALE CORBA-
DISTRIBUTED SOFTWARE FRAMEWORK FOR
NIF CONTROLS”, Proceedings of the 8th International
Conference on Accelerator & Large Experimental Physics
Control Systems, Stanford Linear Accelerator Center,
November 27-30, 2001, p. 425.

[8] Salutation Architecture Specification, Version 2.0c,
Salutation Consortium, June 1, 1999.

[9] Universal Plug and Play Device Architecture, Version
1.0, Microsoft, June 8, 2000.

[10] Ken Arnold et al, The Jini Specification, V1.0
Addison-Wesley 1999. Latest version is 1.1 available
from Sun.

[11] Specification of the Home Audio/Video
Interoperability (HAVi) Archiecture, V1.1, HAVi,
Inc., May 15, 2001.

[12] Guttman, E., Perkins, C., Veizades, J., and Day, M.
Service Location Protocol Version 2, Internet
Engineering Task Force (IETF), RFC 2608, June
1999.

[13] Specification of the Bluetooth System, Core, Volume
1, Version 1.1, the Bluetooth SIG, Inc., February 22,
2001.

[14] Dabrowski, C. Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery
Architectures During Communications Failure”,
Proceedings of the 3rd International Workshop on
Software Performance, ACM, July 2002, pp. 168-178.

[15] Dabrowski, C., Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery
Architectures In Response to Message Loss”,
Proceedings of the 4th International Workshop on
Active Middleware Services, IEEE Computer Society,
July 2002, pp. 51-60.

[16] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering
of Events,” http://anna.stanford.edu/rapide, August
1996.

[17] Bowers, K., Mills, K., and Rose, S. “Self-adaptive
Leasing for Jini”, accepted for presentation at IEEE
PerCom 2003, Fort Worth, Texas, March 2003.

